LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.C.A. DEGREE EXAMINATION - MATHS \& STATS

SECOND SEMESTER - APRIL 2013
MT/ST 2902 - PROBABILITY AND STOCHASTIC PROCESSES

Date : 30/04/2013
Dept. No. \square Max. : 100 Marks
Time : 9:00-12:00

Section A

Answer all questions.

1. Define a continuous random variable.
2. Define conditional distributions.
3. Define Geometric distribution.
4. A storage depot contains 10 machines, 4 of which are defective. A company selects 5 of these machines at random thinking that they are in working condition. What is the probability that all 5 of the machines are non-defective?
5. Define probability measure.
6. Define an n-Step transition probability matrix
7. When do you say a Markov chain is irreducible?
8. Define the stationary probability distribution of a Markov chain
9. State the postulates of Pure Birth Process
10. Define a Brownian motion process.

Section B

Answer any FIVE questions.
$(5 \times 8=40)$
11. State and prove addition theorem of probability for n events.
12. Derive the mean \& variance of Poisson distribution.
13. A random variable X has the distribution function F ,
$F(x)= \begin{cases}0 & x<0 \\ 1 / 2 & x=0 \\ 1 / 2+x / 2 & 0<x<1 \\ 1 & x \geq 1\end{cases}$

Show that F is neither continuous nor discontinuous. Also evaluate $\mathrm{P}(0 \leq \mathrm{X} \leq 1 / 2)$.
14. If t is any positive real number of $\mathrm{p}(\mathrm{x})=e^{-t}\left(1-e^{-t}\right)^{x-1}$, then find expectation of X and variance of X .
15. Explain the canonical representation of a TPM(transition probability matrix).
16. Show that the states of a two dimensional random walk are recurrent.
17. Explain in detail any two examples of renewal processes.
18. Derive Kolmogorov-Backward differential equations for birth and death process.

Section C

Answer any TWO questions.

(20x2=40)
19. (a) Let X be a continuous random variable with p.d.f. given by:

$$
f(x)=\left\{\begin{array}{l}
k x, 0 \leq x<1 \\
k, 1 \leq x<2 \\
-k x+3 k, \quad 2 \leq x<3 \\
0, \quad \text { elsewhere }
\end{array}\right.
$$

(i) Determine the constant k ,
(ii) Determine $\mathrm{F}(\mathrm{x})$, the c.d.f
(iii) If $\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3} are three independent observations from X , what is the probability that exactly one of these three numbers is larger than 1.5 ?
(b) State and prove Bayes theorem.
20. (a) The joint p.d.f. of two random variables X and Y is given by:

$$
\frac{9(1+x+y)}{2(1+x)^{4}(1+y)^{4}} ; 0 \leq x, y \leq \infty
$$

Find the marginal distribution of X and Y , and the conditional distribution of Y for $\mathrm{X}=\mathrm{x}$.
(b) State and prove the basic limit theorem of Markov chains.
21. (a) Show that the states of a one dimensional random walk are recurrent if $\mathrm{p}=\mathrm{q}=1 / 2$
(b) A Markov chain on states $\{1,2,3,4,5,6\}$ has transition probability matrix P. Find all equivalence classes and period of states. Also check for the recurrence of the states.
$P=\left[\begin{array}{cccccc}0.5 & 0 & 0 & 0 & 0.5 & 0 \\ 0 & 0.2 & 0.2 & 0.5 & 0.1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0.6 & 0 & 0.4 & 0 & 0 \\ 0.3 & 0 & 0 & 0 & 0.7 & 0 \\ 0.2 & 0.2 & 0.1 & 0 & 0.2 & 0.3\end{array}\right]$
22. Let $\{\mathrm{X}(\mathrm{t})\}$ be a process satisfying all the postulates of a pure birth process, then derive the transition distribution of the process.

